Consequence-Based Reasoning for Description Logics with Disjunctions and Number Restrictions

Author:

Bate Andrew,Motik Boris,Cuenca Grau Bernardo,Tena Cucala David,Simančík František,Horrocks Ian

Abstract

Classification of description logic (DL) ontologies is a key computational problem in modern data management applications, so considerable effort has been devoted to the development and optimisation of practical reasoning calculi. Consequence-based calculi combine ideas from hypertableau and resolution in a way that has proved very effective in practice. However, existing consequence-based calculi can handle either Horn DLs (which do not support disjunction) or DLs without number restrictions. In this paper, we overcome this important limitation and present the first consequence-based calculus for deciding concept subsumption in the DL ALCHIQ+. Our calculus runs in exponential time assuming unary coding of numbers, and on ELH ontologies it runs in polynomial time. The extension to disjunctions and number restrictions is technically involved: we capture the relevant consequences using first-order clauses, and our inference rules adapt paramodulation techniques from first-order theorem proving. By using a well-known preprocessing step, the calculus can also decide concept subsumptions in SRIQ---a rich DL that covers all features of OWL 2 DL apart from nominals and datatypes. We have implemented our calculus in a new reasoner called Sequoia. We present the architecture of our reasoner and discuss several novel and important implementation techniques such as clause indexing and redundancy elimination. Finally, we present the results of an extensive performance evaluation, which revealed Sequoia to be competitive with existing reasoners. Thus, the calculus and the techniques we present in this paper provide an important addition to the repertoire of practical implementation techniques for description logic reasoning.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3