Abstract
AbstractInformation systems have to deal with an increasing amount of data that is heterogeneous, unstructured, or incomplete. In order to align and complete data, systems may rely on taxonomies and background knowledge that are provided in the form of an ontology. This survey gives an overview of research work on the use of ontologies for accessing incomplete and/or heterogeneous data.
Publisher
Springer Science and Business Media LLC
Reference391 articles.
1. Abiteboul S, Arenas M, Barceló P, Bienvenu M, Calvanese D, David C, Hull R, Hüllermeier E, Kimelfeld B, Libkin L, Martens W, Milo T, Murlak F, Neven F, Ortiz M, Schwentick T, Stoyanovich J, Su J, Suciu D, Vianu V, Yi K (2018) Research directions for principles of data management (dagstuhl perspectives workshop 16151). Dagstuhl Manif 7(1):1–29. https://doi.org/10.4230/DagMan.7.1.1
2. Abiteboul S, Buneman P, Suciu D (1999) Data on the web: from relations to semistructured data and XML. Morgan Kaufmann, Burlington
3. Abiteboul S, Hull R, Vianu V (1995) Foundations of databases. Addison-Wesley, Boston
4. Ahmetaj S, Ortiz M, Šimkus M (2018) Rewriting guarded existential rules into small datalog programs. In: Proceedings of the 21st international conference on database theory (ICDT 2018), LIPIcs, vol 98. Schloss Dagstuhl. pp 4:1–4:24. https://doi.org/10.4230/LIPIcs.ICDT.2018.4
5. Ahmetaj S, Ortiz M, Šimkus M (2020) Polynomial rewritings from expressive description logics with closed predicates to variants of datalog. Artif Intell 280:103220. https://doi.org/10.1016/j.artint.2019.103220
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献