Ordinal and Probabilistic Representations of Acceptance

Author:

Dubois D.,Fargier H.,Prade H.

Abstract

An accepted belief is a proposition considered likely enough by an agent, to be inferred from as if it were true. This paper bridges the gap between probabilistic and logical representations of accepted beliefs. To this end, natural properties of relations on propositions, describing relative strength of belief are augmented with some conditions ensuring that accepted beliefs form a deductively closed set. This requirement turns out to be very restrictive. In particular, it is shown that the sets of accepted belief of an agent can always be derived from a family of possibility rankings of states. An agent accepts a proposition in a given context if this proposition is considered more possible than its negation in this context, for all possibility rankings in the family. These results are closely connected to the non-monotonic 'preferential' inference system of Kraus, Lehmann and Magidor and the so-called plausibility functions of Friedman and Halpern. The extent to which probability theory is compatible with acceptance relations is laid bare. A solution to the lottery paradox, which is considered as a major impediment to the use of non-monotonic inference is proposed using a special kind of probabilities (called lexicographic, or big-stepped). The setting of acceptance relations also proposes another way of approaching the theory of belief change after the works of Gärdenfors and colleagues. Our view considers the acceptance relation as a primitive object from which belief sets are derived in various contexts.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Reasoning and learning in the setting of possibility theory - Overview and perspectives;International Journal of Approximate Reasoning;2023-09

2. Possibility Theory;Encyclopedia of Complexity and Systems Science Series;2023

3. Handling inconsistency in partially preordered ontologies: the Elect method;Journal of Logic and Computation;2021-04-22

4. Soft ordered based multi-granulation rough sets and incomplete information system;Journal of Intelligent & Fuzzy Systems;2020-07-17

5. Labor-management negotiation conflict analysis based on soft preference relation;Journal of Intelligent & Fuzzy Systems;2020-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3