A Critical Assessment of Benchmark Comparison in Planning

Author:

Howe A. E.,Dahlman E.

Abstract

Recent trends in planning research have led to empirical comparison becoming commonplace. The field has started to settle into a methodology for such comparisons, which for obvious practical reasons requires running a subset of planners on a subset of problems. In this paper, we characterize the methodology and examine eight implicit assumptions about the problems, planners and metrics used in many of these comparisons. The problem assumptions are: PR1) the performance of a general purpose planner should not be penalized/biased if executed on a sampling of problems and domains, PR2) minor syntactic differences in representation do not affect performance, and PR3) problems should be solvable by STRIPS capable planners unless they require ADL. The planner assumptions are: PL1) the latest version of a planner is the best one to use, PL2) default parameter settings approximate good performance, and PL3) time cut-offs do not unduly bias outcome. The metrics assumptions are: M1) performance degrades similarly for each planner when run on degraded runtime environments (e.g., machine platform) and M2) the number of plan steps distinguishes performance. We find that most of these assumptions are not supported empirically; in particular, that planners are affected differently by these assumptions. We conclude with a call to the community to devote research resources to improving the state of the practice and especially to enhancing the available benchmark problems.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Object Reconfiguration with Simulation-Derived Feasible Actions;2023 IEEE International Conference on Robotics and Automation (ICRA);2023-05-29

2. Reformulation techniques for automated planning: a systematic review;The Knowledge Engineering Review;2023

3. On the Importance of Domain Model Configuration for Automated Planning Engines;Journal of Automated Reasoning;2021-06-16

4. On the predictability of domain‐independent temporal planners;Computational Intelligence;2019-04-22

5. Performance robustness of AI planners in the 2014 International Planning Competition;AI Communications;2018-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3