Dynamic Control in Real-Time Heuristic Search

Author:

Bulitko V.,Lustrek M.,Schaeffer J.,Bjornsson Y.,Sigmundarson S.

Abstract

Real-time heuristic search is a challenging type of agent-centered search because the agent's planning time per action is bounded by a constant independent of problem size. A common problem that imposes such restrictions is pathfinding in modern computer games where a large number of units must plan their paths simultaneously over large maps. Common search algorithms (e.g., A*, IDA*, D*, ARA*, AD*) are inherently not real-time and may lose completeness when a constant bound is imposed on per-action planning time. Real-time search algorithms retain completeness but frequently produce unacceptably suboptimal solutions. In this paper, we extend classic and modern real-time search algorithms with an automated mechanism for dynamic depth and subgoal selection. The new algorithms remain real-time and complete. On large computer game maps, they find paths within 7% of optimal while on average expanding roughly a single state per action. This is nearly a three-fold improvement in suboptimality over the existing state-of-the-art algorithms and, at the same time, a 15-fold improvement in the amount of planning per action.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Game-map Pathfinding with Per-Problem Selection of Synthesized Heuristics;2023 IEEE Conference on Games (CoG);2023-08-21

2. Artificial Intelligence for Games;A Guided Tour of Artificial Intelligence Research;2020

3. CUBE System: A REST and RESTful Based Platform for Liquid Software Approaches;Lecture Notes in Business Information Processing;2018

4. The compressed differential heuristic;AI Communications;2017-12-01

5. A new weighted pathfinding algorithms to reduce the search time on grid maps;Expert Systems with Applications;2017-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3