Budgeted Optimization with Constrained Experiments

Author:

Azimi Javad,Fern Xiaoli,Fern Alan

Abstract

Motivated by a real-world problem, we study a novel budgeted optimization problem where the goal is to optimize an unknown function f(.) given a budget by requesting a sequence of samples from the function. In our setting, however, evaluating the function at precisely specified points is not practically possible due to prohibitive costs. Instead, we can only request constrained experiments. A constrained experiment, denoted by Q, specifies a subset of the input space for the experimenter to sample the function from. The outcome of Q includes a sampled experiment x, and its function output f(x). Importantly, as the constraints of Q become looser, the cost of fulfilling the request decreases, but the uncertainty about the location x increases. Our goal is to manage this trade-off by selecting a set of constrained experiments that best optimize f(.) within the budget. We study this problem in two different settings, the non-sequential (or batch) setting where a set of constrained experiments is selected at once, and the sequential setting where experiments are selected one at a time. We evaluate our proposed methods for both settings using synthetic and real functions. The experimental results demonstrate the efficacy of the proposed methods.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inverse dynamics method in properties estimation of residual stiffness of multi-story buildings;Journal «Izvestiya vuzov Investitsiyi Stroyitelstvo Nedvizhimost»;2023-10-17

2. Physics Knowledge Discovery via Neural Differential Equation Embedding;Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track;2021

3. Computational sustainability;Communications of the ACM;2019-08-21

4. Some Properties of Batch Value of Information in the Selection Problem;Journal of Artificial Intelligence Research;2017-04-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3