Some Properties of Batch Value of Information in the Selection Problem

Author:

Shperberg Shahaf S.,Shimony Solomon Eyal

Abstract

Given a set of items of unknown utility, we need to select one with a utility as high as possible (“the selection problem”). Measurements (possibly noisy) of item values prior to selection are allowed, at a known cost. The goal is to optimize the overall sequential decision process of measurements and selection. Value of information (VOI) is a well-known scheme for selecting measurements, but the intractability of the problem typically leads to using myopic VOI estimates. Other schemes have also been proposed, some with approximation guarantees, based on submodularity criteria. However, it was observed that the VOI is not submodular in general. In this paper we examine theoretical properties of VOI for the selection problem, and identify cases of submodularity and supermodularity. We suggest how to use these properties to compute approximately optimal measurement batch policies, with an example based on a “wine selection problem”.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3