Subset Selection Via Implicit Utilitarian Voting

Author:

Caragiannis Ioannis,Nath Swaprava,Procaccia Ariel D.,Shah Nisarg

Abstract

How should one aggregate ordinal preferences expressed by voters into a measurably superior social choice? A well-established approach -- which we refer to as implicit utilitarian voting -- assumes that voters have latent utility functions that induce the reported rankings, and seeks voting rules that approximately maximize utilitarian social welfare. We extend this approach to the design of rules that select a subset of alternatives. We derive analytical bounds on the performance of optimal (deterministic as well as randomized) rules in terms of two measures, distortion and regret. Empirical results show that regret-based rules are more compelling than distortion-based rules, leading us to focus on developing a scalable implementation for the optimal (deterministic) regret-based rule. Our methods underlie the design and implementation of RoboVote.org, a not-for-profit website that helps users make group decisions via AI-driven voting methods.

Publisher

AI Access Foundation

Subject

Artificial Intelligence

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Participatory Objective Design via Preference Elicitation;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

2. Revisiting the Distortion of Distributed Voting;Theory of Computing Systems;2024-04-05

3. Balancing democracy: majoritarianism versus expression of preference intensity;Public Choice;2024-03-14

4. Don’t Roll the Dice, Ask Twice: The Two-Query Distortion of Matching Problems and Beyond;SIAM Journal on Discrete Mathematics;2024-03-12

5. Optimized Distortion and Proportional Fairness in Voting;ACM Transactions on Economics and Computation;2024-03-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3