Effect of Turntable Rotation Rate on Drying Kinetics and Functional Properties of Lemon Peel during Microwave Drying

Author:

BARUTÇU MAZI Işıl1ORCID,SAN Sevilay1ORCID

Affiliation:

1. ORDU UNIVERSITY

Abstract

The aim of this study is to investigate the effect of the rotational rate of the turntable on drying kinetics of lemon peels and some functional and flow properties of lemon peel powders. Lemon peels were dried by microwave drying using different rates of rotation (0, 6.5, 9.5, and 12.5 rpm) at different microwave power levels (180W, 300W, 450W and 600W), and dried by oven drying and freeze-drying methods. Drying time was shortened by 72- 95% by microwave drying compared to oven drying. Microwave drying with rotation provided 5.6-23.8% reduction in drying time of peels compared to drying without rotation. Effect of rotation rate on drying time of lemon peels depended on the microwave power level. Page model provided lower SSE, RMSE, and higher R2 values within 5 different thin layer models. The effective moisture diffusivity value, ranging between 1.7x10-8 m2 s -1 -7.6x10-8 m2 s -1, was higher during microwave drying with rotation. The activation energy ranged between 21.3-22.7 W/g. Microwave drying provided higher bulk density, similar or lower water holding capacity and oil retention capacity values compared to freeze drying and oven drying. Freeze dried lemon peel powder had the lowest bulk density due to its porous structure. Microwave drying without rotation and the highest power level caused lower bulk density. At higher power levels, influence of turntable rotation on water holding capacity was more notable. Microwave drying technique can be used as alternative drying techniques to obtain high quality dried lemon peel powder if appropriate processing conditions are selected.

Funder

Ordu Üniversitesi

Publisher

Canakkale Onsekiz Mart University

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3