Movie Success Prediction Using Data Mining

Author:

D.A. Olubukola,O.M. Stephen,A.K. Funmilayo,O. Ayokunle,A. Oyebola,A. Oduroye,A. Wumi,M. Yaw

Abstract

The movie industry is arguably one of the biggest entertainment sectors. Nollywood, the Nigerian movie industry produces tons of movies for public consumption, but only a few make it to box-office or end up becoming blockbusters. The introduction of movie success prediction can play an important role in the industry not only to predict movie success but to help directors and producers make better decisions for the purpose of profit. This study proposes a movie prediction model that applies data mining techniques and machine learning algorithms to predict the success or failure of an upcoming movie (based on predefined parameters). The parameters needed for predicting the success or failure of a movie include dataset needed for the process of data mining such as the historical data of actors, actresses, writers, directors, marketing and production budget, audience, location, release date, and competing movies on same release date. This model also helps movie consumers to determine a blockbuster, hit, success rating and quality of upcoming movies before deciding on a movie ticket. The data mining techniques was applied to Internet Movie Database MetaData which was initially passed through cleaning and integration process.

Publisher

African - British Journals

Reference18 articles.

1. Alpaydin, E. (2010). Introduction to machine learning (3rd ed.). New York: MIT Press.

2. Baker. R. (2010). Data Mining for Education. In McGaw, B., Peterson, P., Baker, E. (Eds.) International Encyclopedia of Education (3rd edition), 7, 112-118. Oxford, UK: Elsevier.

3. Cai, E. (2014). Machine learning of the day: The "no free lunch" theorem. [Online]. Retrieved from www.chemicalstatistician.wordpress.com/machine-learningof-the-day-The-no-free-launch-theorem.

4. Dhage, S. N. & Raina C. K. (2016). A review on Machine Learning Techniques. International Journal on Recent and Innovation Trends in Computing and Communication, 4(3), 395-399.

5. Greene D., Cunningham P. & Mayer R. (2008) Unsupervised Learning and Clustering. In: Cord M., Cunningham P. (eds) Machine Learning Techniques for Multimedia. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75171-7_3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3