Long Horizon Episodic Decision Making for Cognitively Inspired Robots

Author:

,Singh ShwetaORCID,Ghatnekar VedantORCID, ,Katti SudamanORCID,

Abstract

The Human decision-making process works by recollecting past sequences of observations and using them to decide the best possible action in the present. These past sequences of observations are stored in a derived form which only includes important information the brain thinks might be useful in the future, while forgetting the rest. we propose an architecture that tries to mimic the human brain and improve the memory efficiency of transformers by using a modified Transformer XL architecture which uses Automatic Chunking which only attendsto the relevant chunksin the transformer block. On top ofthis,we useForget Span which is technique to remove memories that do not contribute to learning. We also theorize the technique of Similarity based forgetting to remove repetitive memories. We test our model in various tasks that test the abilities required to perform well in a human-robot collaboration scenario.

Publisher

Lattice Science Publication (LSP)

Reference12 articles.

1. Stephanie CY Chan, Marissa C Applegate, Neal W Morton, Sean M Polyn, and Kenneth A Norman (2017) 'Lingering representations of stimuli influence recall organization', Neuropsychologia, vol. 97, pp. 72-82, DOI: 10.1016/j.neuropsychologia.2017.01.029

2. Sols, I. et al. (2017) 'Event Boundaries Trigger Rapid Memory Reinstatement of the Prior Events to Promote Their Representation in Long-Term Memory', Current Biology, 27(22), pp. 3499-3504.e4. doi: 10.1016/j.cub.2017.09.057.

3. Aida Nematzadeh, Sebastian Ruder, and Dani Yogatama (2020) 'On memory in human and artificial language processing systems', ICLR 2020: In Bridging AI and Cognitive Science Workshop, 26 April- 1 May. Available at: https://api.semanticscholar.org/CorpusID:221088218.

4. Pleines, M. et al. (2023) 'TransformerXL as Episodic Memory in Proximal Policy Optimization', GitHub Repository. Available at: https://github.com/MarcoMeter/episodic-transformer-memory-ppo.

5. Chevalier-Boisvert et al. (2023) 'Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks', CoRR, abs/2306.13831.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Low-Cost EMG Based Bionic ARM using Servo Motor and Arduino;Indian Journal of Signal Processing;2024-05-30

2. A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models;International Journal of Innovative Technology and Exploring Engineering;2024-03-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3