A Case Study on the Diminishing Popularity of Encoder-Only Architectures in Machine Learning Models

Author:

,Sridhar Praveen KumarORCID,Srinivasan NitinORCID, ,Kumar Adithyan ArunORCID, ,Rajendran GowthamarajORCID, ,Perumalsamy Kishore KumarORCID,

Abstract

This paper examines the shift from encoder-only to decoder and encoder-decoder models in machine learning, highlighting the decline in popularity of encoder-only architectures. It explores the reasons behind this trend, such as the advancements in decoder models that offer superior generative capabilities, flexibility across various domains, and enhancements in unsupervised learning techniques. The study also discusses the role of prompting techniques in simplifying model architectures and enhancing model versatility. By analyzing the evolution, applications, and shifting preferences within the research community and industry, this paper aims to provide insights into the changing landscape of machine learning model architectures.

Publisher

Blue Eyes Intelligence Engineering and Sciences Engineering and Sciences Publication - BEIESP

Reference19 articles.

1. Vaswani, A., et al. (2017). "Attention Is All You Need." Advances in Neural Information Processing Systems.

2. Radford, A., et al. (2018). "Improving Language Understanding by Generative Pre-Training." OpenAI Blog.

3. Devlin, J., et al. (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.

4. Brown, T., et al. (2020). "Language Models are Few-Shot Learners." arXiv preprint arXiv:2005.14165.

5. Raffel, C., et al. (2019). "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer." Journal of Machine Learning Research.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence in IoT Security: Review of Advancements, Challenges, and Future Directions;International Journal of Innovative Technology and Exploring Engineering;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3