Fake News Detection

Author:

,Rajalakshmi B ORCID,Sebastian Nithin,

Abstract

The spread of false information on the internet has become a major social issue, casting doubt on the veracity of information shared on these platforms. This study uses cutting-edge methods from machine learning (ML) and natural language processing (NLP) to present a complete framework for the detection of fake news. The purpose of this paper is to develop a model for detecting bogus news. A model is selected by using supervised learning techniques. In addition, we categorize news stories as real or fraudulent using the Naïve Bayes, Logistic Regression, and Random Forest algorithms. Our methodology offers an approach to false news identification that is more robust by taking into account the credibility of the news sources in addition to the content of the news. Using labeled datasets of fictitious and authentic news stories, we train our algorithms. A few methodologies were compared to achieve varying degrees of accuracy. When compared to the other two models, Random Forest is thought to have produced the best results in terms of accuracy. We assess our framework's effectiveness using real-world news articles and benchmark datasets, showcasing its versatility in correctly recognizing false information in a variety of settings and domains. We demonstrate the advantages of our method in terms of detection accuracy, scalability, and computational efficiency by comprehensive experimentation and comparative analysis. All things considered, our suggested framework is a major step forward in the fight against the dissemination of false information on the internet and provides a workable way to lessen the negative effects of fake news on people, communities, and society at large.

Publisher

Lattice Science Publication (LSP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3