Fake news detection using naïve Bayes and long short term memory algorithms

Author:

Senhadji Sarra,Ahmed Rania Azad San

Abstract

Information and communication technologies have revolutionized the numerical world by offering the freedom to publish and share all types of information. Unfortunately, not all information circulated on the internet is accurate, which can have serious consequences, including misleading readers. Detecting false news is a complicated task to overcome. Massive studies focus on using machine and deep learning techniques in an attempt to classify the news as authentic or not. The goal of this research is an attempt to glance and evaluate how naïve bayes (NB) and long short-term memory (LSTM) classifiers can be used to positively identify fake news. The outcomes of this experiment reveal that LSTM achieves an accuracy of 92 percent over naive bayes. Moreover, the findings of the proposed approach’s results outperform the related work results.

Publisher

Institute of Advanced Engineering and Science

Subject

Electrical and Electronic Engineering,Artificial Intelligence,Information Systems and Management,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3