Monitoring of tool wear distribution with cutting force measurement in drilling
Author:
Affiliation:
1. Division of Mechanical Engineering, Ashikaga University
2. Department of Mechanical Engineering, Tokyo Denki University
Publisher
Japan Society of Mechanical Engineers
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Link
https://www.jstage.jst.go.jp/article/jamdsm/15/4/15_2021jamdsm0047/_pdf
Reference12 articles.
1. Corne, R., Nath, C., El Mansori, M. and Kurfess, T., Study of spindle power data with neural network for predicting real-time tool wear/breakage during Inconel drilling, Journal of Manufacturing Systems, Vol.43, (2017) pp.287-295.
2. Dheeraj Simon, G. and Deivanathan, R., 2019, Early detection of drilling tool wear by vibration data acquisition and classification, Manufacturing Letters, Vol.21, (2019) pp.60-65.
3. Dimla Snr. D. E., Sensor signals for tool-wear monitoring in metal cutting operations - a review of methods, International Journal of Machine Tools and Manufacture, Vol.40, No.8 (2000), pp.1073-1098.
4. Ertunc, H. M. and Oysu, C., Drill wear monitoring using cutting force signals, mechatronics, Vol.14, No.5 (2004), pp.533-548.
5. Gowda, B. M. U., Ravindra, H. V., Ullas, M., Prakash, G. V. N. and Ugrasen, G., Estimation of circularity, cylindricity and surface roughness in drilling Al-Si3N4 metal matrix composites using artificial neural network, Procedia Materials Science, Vol.6 (2014), pp.1780-1787.
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An experimental study of multi-sensor tool wear monitoring and its application to predictive maintenance;The International Journal of Advanced Manufacturing Technology;2024-06-13
2. Tool wear monitoring based on scSE-ResNet-50-TSCNN model integrating machine vision and force signals;Measurement Science and Technology;2024-05-13
3. Evaluation Approach for Residual Stress in Drilling of Aluminum Alloy;International Journal of Automation Technology;2024-05-05
4. In Situ Evaluation of Drill Wear Using Tool Image Captured on Machining Center;International Journal of Automation Technology;2024-03-05
5. Reducing the Cost of 3D Metal Printing Using Selective Laser Melting (SLM) Technology in the Manufacture of a Drill Body by Reinforcing Thin-Walled Shell Forms with Metal-Polymers;Journal of Manufacturing and Materials Processing;2024-02-21
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3