Gear fault diagnosis based on SGMD noise reduction and CNN
Author:
Affiliation:
1. School of Energy and Mechanical Engineering, Shanghai University of Electric Power
Publisher
Japan Society of Mechanical Engineers
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Link
https://www.jstage.jst.go.jp/article/jamdsm/16/3/16_2022jamdsm0031/_pdf
Reference24 articles.
1. Amarouayache, I.I.E., Saadi, M.N., Guersi, N. and Boutasseta, N., Bearing fault diagnosiss using EEMD processing and convolutional neural network methods, The International Journal of Advanced Manufacturing Technology, Vol. 107, No.9-10 (2020), pp.4077-4095.
2. Cheng, J., Yang, Y., Li, X. and Cheng, J.S., An early fault diagnosis method of gear based on improved symplectic geometry mode decomposition, Measurement, Vol. 151(2020), pp.107140.
3. Guo, J.F., Liu, X.Y., LI, S.X., Wang, Z.M. and Caesarendra, W., Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network, Shock and Vibration, Vol. 2020(2020), pp.1-14.
4. Hu, N.Q., Chen, H.P., Cheng, Z., Zhang, L. and Zhang, Y., Fault Diagnosis for Planetary Gearbox Based on EMD and Deep Convolutional Neural Networks, Journal of Mechanical Engineering, Vol. 55, No.7(2019), pp.9-18.(In Chinese)
5. Krizhevsky, A., Sutskever, I. and E.Hinton, G., ImageNet Classification with Deep Convolutional Neural Networks, Communications of the ACM, Vol. 60, No.6 (2017), pp.84-90.
Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Dam deformation prediction model based on the multiple decomposition and denoising methods;Measurement;2024-10
2. Smart Caregiving Support Cloud Integration Systems;2024 International Conference on Smart Computing, IoT and Machine Learning (SIML);2024-06-06
3. Research on fault diagnosis method based on the Markov transition field with enhanced properties and AM-MSCNN under different external environmental interference;Structural Health Monitoring;2024-04-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3