Bearing Intelligent Fault Diagnosis Based on Wavelet Transform and Convolutional Neural Network

Author:

Guo Junfeng1ORCID,Liu Xingyu1ORCID,Li Shuangxue1ORCID,Wang Zhiming1ORCID

Affiliation:

1. School of Mechanical and Electronical Engineering, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

As one of the important parts of modern mechanical equipment, the accurate real-time diagnosis of rolling bearing is particularly important. Traditional fault diagnosis methods have some disadvantages, such as low diagnostic accuracy and difficult fault feature extraction. In this paper, a method combining Wavelet transform (WT) and Deformable Convolutional Neural Network (D-CNN) is proposed to realize accurate real-time fault diagnosis of end-to-end rolling bearing. The vibration signal of rolling bearing is taken as the monitoring target. Firstly, the Orthogonal Matching Pursuit (OMP) algorithm is used to remove the harmonic signal and retain the impact signal and noise. Secondly, the time-frequency map of the signal is obtained by time-frequency transform using Wavelet analysis. Finally, the D-CNN is used for feature extraction and classification. The experimental results show that the accuracy of the method can reach 99.9% under various fault modes, and it can accurately identify the fault of rolling bearing.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference27 articles.

1. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution neural network;H. Li;Journal of Vibration and Shock,2018

2. Rolling bearing fault diagnosis using recursive autocorrelation and autoregressive analyses;G. Reza

3. Gear fault diagnosis method based on ensemble empirical mode decomposition energy entropy and support vector machine;C. Zhang;Journal of Central South University (Natural Science Edition),2012

4. Bearing fault detection based on hybrid ensemble detector and empirical mode decomposition

5. Observer-biased bearing condition monitoring: From fault detection to multi-fault classification

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3