PARAMETER CALIBRATION OF DISCRETE ELEMENT SIMULATION MODEL OF WHEAT STRAW-SOIL MIXTURE IN HUANG HUAI HAI PRODUCTION AREA

Author:

GAO Zenghui1,SHANG Shuqi2,XU Nan3,WANG Dongwei4

Affiliation:

1. Xinjiang Agricultural University, College of Mechanical and Electronic Engineering, Xinjiang, China

2. Xinjiang Agricultural University, College of Mechanical and Electronic Engineering, Xinjiang, China; Qingdao Agricultural University, College of Mechanical and Electronic Engineering, Shandong, China

3. Shandong Agricultural University, College of Mechanical and Electronic Engineering, Shandong, China

4. Qingdao Agricultural University, College of Mechanical and Electronic Engineering, Shandong, China

Abstract

At present, there is a lack of accurate discrete element simulation model and parameters in the equipment in Huang Huai Hai double cropping production area, which hinders the optimization and improvement of equipment operation effect. In this paper, the discrete element method is used to study the interaction between soil-touching components and wheat straw-soil mixture to improve the performance of equipment. Firstly, the Hertz-Mindlin with JKR Cohesion contact model is selected for the wheat straw-soil mixture to calibrate the parameters. Then, the method of combining physical test and simulation test is used to calibrate the parameters, the cylinder lifting method is used to determine the buildup angle of wheat straw soil mixture, and the Plackett-Burman screening method and the steepest climbing test are used to determine the optimal combination range of soil-straw static friction coefficient, soil-straw dynamic friction coefficient and soil-soil dynamic friction coefficient contact model parameters. Using Box-Behnken optimization research and development of key components such as soil contact of seedbed preparation test, the regression equation of the stacking angle of wheat straw soil mixture was obtained, and the variance and interaction effect of the regression model were analysed. The regression model was used to find the optimal solution in Design-Expert software with an angle of repose of 41.23°, which yielded a soil-straw static friction factor of 0.072, a soil-straw dynamic friction factor of 0.78, and a soil-soil dynamic friction factor of 0.068, with an angle of repose error of 1.43%, indicating that the contact model parameters are reliable, and the parameters can provide a reference and theoretical basis for the study of the key components of the seedbed preparation equipment such as touching soil in the Yellow and Huaihai Sea two-maturity zone.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3