CONSTRUCTION OF A DISCRETE ELEMENT MODEL OF BUCKWHEAT SEEDS AND CALIBRATION OF PARAMETERS

Author:

Xu Bing1,Zhang Yanqing1,Cui Qingliang1,Ye Shaobo1,Zhao Fan1

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Taigu/China

Abstract

In view of the lack of seeds contact parameters that can be used as a reference for the design of key mechanical components such as buckwheat planting, harvesting, and processing, this study combines simulation optimization design experiments and physical experiments to calibrate the parameters of simulated discrete element of buckwheat seeds. The non-spherical particle model of buckwheat seeds was established using the automatic filling method, and the simulation accumulating test and physical accumulating test were carried out using the bottomless conical cylinder lifting method; the repose angle of buckwheat seeds was taken as the response value, and the initial parameters were screened for significance based on the Plackett-Burman test; and a second-order regression model of the error value for the repose angle and the significance parameter was established based on the steepest climb test and Box-Behnken test. On this basis, the minimum error value of the repose angle was used as the goal to optimize the significance parameter, the optimal combination of contact parameters was obtained, and parameter validation tests were carried out. The significance screening test showed that the buckwheat-buckwheat static friction coefficient, the buckwheat-stainless steel rolling friction coefficient, and the buckwheat-stainless steel restitution coefficient had significant effects on the repose angle of buckwheat (P<0.05). The optimization test showed that the buckwheat-buckwheat static friction coefficient was 0.510, the buckwheat-stainless steel rolling friction coefficient was 0.053, and the buckwheat-stainless steel restitution coefficient was 0.492. The validation test showed that the repose angle of buckwheat seeds under such parameter was 25.39°, and the error with the repose angle of the physical test was 0.55%, which indicated that the optimal parameter combination was reliable. This study could provide a seed model and simulation contact parameters for the research and development of buckwheat sowing, threshing and hulling machinery.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3