ANALYSIS OF VIBRATION CHARACTERISTICS FOR RUBBING MACHINE BASED ON MODAL TEST

Author:

YUE Yao1,TIAN Haiqing1,LIU Fei1,ZHANG Tao1,LI Dapeng1,WANG Di1

Affiliation:

1. College of Mechanical and Electrical Engineering, Inner Mongolia Agricultural University, Hohhot, China

Abstract

Aiming at the problems of large vibrations and noise of a working stalk rubbing machine, this paper took the 9R-60 rubbing machine as the research object and used the B&K modal test system and the vibration test system to analyse the modal and no-load conditions of the whole machine. Through analysing modal test data, it was concluded that the first five natural frequencies of the machine were 95.262 Hz, 144.386 Hz, 288.198 Hz, 313.719 Hz and 326.140 Hz. The results showed that spindle rotation had a more significant effect on the vibration than the feed chain rotation; the maximum vibration acceleration occurred at the small motor frame at a spindle speed of 1700 r·min-1 and a feed chain speed of 0.65 m·s-1, which was 135.539 m·s-2. The distribution of the amplitude statistical characteristics of the vibration signals follows the normal distribution and belongs to the stationary random process. The vibration was a self-excited vibration of the rotating machinery caused by the rotation of the main shaft and a forced vibration excited by the rotation of the same shaft. The research provides a direction for further research on the vibration characteristics of the rubbing machine under load conditions, and provides a theoretical basis for the subsequent vibration reduction design.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3