RESEARCH ON THE SPRAY CYLINDER INTERNAL FLOW FIELD AND ITS INFLUENCE ON SPRAYING QUALITY OF FORAGE SEED SPRAY SEEDING MACHINE

Author:

CHEN Yan1,GUO Hua1,FU Shi1,ZHANG Rui1,ZHANG Ming1

Affiliation:

1. Department of Information Engineering, Ordos Institute of Technology, Compass, Ordos/ China

Abstract

The objective of ecological restoration and rehabilitation of grasslands is to recreate the original appearance of damaged or degraded vegetation. From previous research, the pneumatic spraying technology is now more commonly used in the world for vegetation restoration. Pneumatic spraying is relatively inexpensive and causes little damage to the original vegetation, making it one of the most effective techniques for restoring natural grassland vegetation under natural climatic conditions. In this paper, the effect of the spraying machine pipe working airflow on the quality of spraying was studied through simulation analysis and experimental tests. The seeding area of the spraying machine corresponding to different values of the pipe inlet airflow speed was determined. The conclusions show that: 1) the spray pipe inlet airflow velocity has a great influence on the uniformity of spraying. When the airflow velocity is higher than 55 m/s, the spraying is not uniform, while the airflow velocity is lower than 45 m/s, the spraying amplitude is smaller, the operational efficiency is low, which is not conducive to the restoration of degraded grasslands; 2) considering the uniformity of spraying and operational efficiency, the airflow velocity at the inlet of the spray pipe should be between 45 and 55 m/s when the spraying machine is in operation. The seed drop area is changed, by adjusting the airflow velocity of the spray pipe inlet, and the reseeding and leakage area of the seed drop area is reduced, so that the spraying performance of the spraying machine is optimized.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3