DESIGN AND TESTING OF A VARIABLE FERTILIZATION SYSTEM BASED ON SOIL NUTRIENT DETECTION

Author:

LIU Jie1,KONG Fanxia1,JIE Zhao2,Yi Lili1,LAN Yubin3,HAN Xin1,ZHANG Minhui1,LIU Lei1,LV Pengcheng1

Affiliation:

1. College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo/China

2. The Forth procurement service station, Troop 32680, Shenyang/China

3. College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo/China; National Sub-Centre for International Collaboration Research Centre for Agricultural Aviation Intelligent Equipment, Zibo/China

Abstract

In order to solve the problems of low correlation between variable fertilizer application system and soil nutrient content detection and insufficient real-time performance, a variable fertilizer application system based on real-time soil nutrient content detection was developed. This paper describes the structure, working principle and design of key components of the soil information acquisition and fertilizer application system. It includes the simulation and analysis of fertilizer application using the discrete element method and the selection of curved blade fertilizer application discs. The system uses STM32F429IGT6 microcontroller and ROS higher-level computer for decision making. The device detects soil nutrients in real time, adjusts the fertilizer motor speed accordingly, and runs autonomously along the planned path. The decision coefficient R^2 between the fertilizer application rate and the speed of the fertilizer application wheel is not less than 0.97, and the relative error between the actual fertilizer application rate and the theoretical fertilizer application rate is up to 5.91%, with the maximum value of the coefficient of variation (CV) of 10.18%. The indoor bench test shows that the relative error between the actual fertilizer application rate and the target fertilizer application rate within a single operating grid is up to 6.2%, with the maximum value of CV being 6.64%. The field test in the orchard showed that the maximum relative error between the actual fertilizer application and the target fertilizer application in a single operation grid was 6.3%, and the maximum value of CV was 12.34%, and the fertilizer application was completed in the operation grid, which demonstrated that the device was able to realize real-time and accurate variable fertilizer application according to the soil nutrient information.

Publisher

INMA Bucharest-Romania

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3