RESEARCH ON CROP INFORMATION EXTRACTION OF AGRICULTURAL UAV IMAGES BASED ON BLIND IMAGE DEBLURRING TECHNOLOGY AND SVM

Author:

Xu Zehai1,Song Haiyan1,Wu Zhiming1,Xu Zefu2,Wang Shifang3

Affiliation:

1. College of Agricultural Engineering, Shanxi Agricultural University, Taigu / China

2. School of Electrical Engineering, Beijing Jiaotong University, Beijing / China

3. Beijing Research centre for Agricultural Standards and Testing, Beijing / China

Abstract

The blurring of crop images acquired by agricultural Unmanned Aerial Vehicle (UAV) due to sudden inputs by operators, atmospheric disturbance, and many other factors will eventually affect the subsequent crop identification, information extraction, and yield estimation. Aiming at the above problems, the new proposed combined deblurring algorithm based on the re-weighted graph total variation (RGTV) and L0-regularized prior, and the other two representative deblurring algorithms were applied to restore blurry crop images acquired during UAV flight, respectively. The restoration performance was measured by subjective vision, and objective evaluation indexes. The crop shape-related and texture-related feature parameters were then extracted, the Support Vector Machine (SVM) classifier with four common kernel functions was implemented for crop classification to realize the purpose of crop information extraction. The deblurring results showed that the proposed algorithm performed better in suppressing the ringing effect and preserving the image fine details, and retained higher objective evaluation indexes than the other two deblurring algorithms. The comparative analysis of different classification kernel functions showed that the Polynomial kernel function with an average recognition rate of 94.83% was most suitable for crop classification and recognition. The research will help in further popularization of crop monitoring based on UAV low-altitude remote sensing.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3