GENERAL STRUCTURE OF TILLAGE DRAFT FORCE. CONSEQUENCES IN EXPERIMENTAL AND APPLICATIVE RESEARCHES

Author:

Cardei P.1,Muraru S.L.1,Sfiru R.1,Muraru V.1

Affiliation:

1. National Institute of Research and Development for Machines and Installations for Agriculture and Food Industry – INMA Bucharest/Romania

Abstract

The empirical and theoretical estimation of the draft force of agricultural machinery for soil tillage, has been the target of scientific research for about one hundred years. The results obtained so far may seem contradictory or divergent. The article presents the results of some research on the usual calculation formulas of the draft force of agricultural machines for soil tillage. Although apparently these formulas are different, analyzing the structure of the formula, we find cohesion and coherence embodied in a simple generalization and easy to use both theoretical and experimental. Moreover, the formulas are convertible between them, the two languages used for their definition (the mechanics of deformable solids and that of the phenomenological description), are only different forms of expression for the same phenomenon. Another problem that is addressed in the research whose results are presented in this article is that of highlighting the dependence of the draft force on the tool speed (in the field) of the soil tillage machine. Exposure is complemented by an algorithm that highlights the dependence of the draft force on the tillage tool speed. Also like a consequences of the draft tillage force structure, finally, a third problem addressed in these researches and whose results and perspectives are given in this paper is that of optimizing the working processes of agricultural machinery for soil tillage. The treatment of the problem starts from the hypothesis of the most general formula of the traction resistance force and proposes some ways to solve the optimal problem.

Publisher

R and D National Institute for Agricultural and Food Industry Machinery - INMA Bucharest

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3