DESIGN AND OPERATION PARAMETERS OPTIMIZATION OF 4SGMS-220 PLOUGH LAYER RESIDUAL FILM RECOVERY MACHINE

Author:

Xing Jianfei1,Wang Xufeng1,Hu Can2,He Xiaowei2,Guo Wensong1,Wang Long2

Affiliation:

1. Xing Jianfei1, 3), Wang Xufeng*1, 3), Hu Can1, 2, 3), He Xiaowei1, 2, 3), Guo Wensong1, 3), Wang Long1, 2, 3) ) 1)College of Mechanical and Electronic Engineering, Tarim University, Alar Xinjiang, 843300 / China; 2) College of Engineering, China Agricultural University, Beijing, 100083 / China; Key Laboratory of Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Alar Xinjiang 843300/ China

2. College of Mechanical and Electronic Engineering, Tarim University, Alar Xinjiang, 843300 / China; College of Engineering, China Agricultural University, Beijing, 100083 / China; Key Laboratory of Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, Alar Xinjiang 843300/ China

Abstract

In view of the harm of residual film retention to soil environment in Xinjiang which even affected the germination of seeds and hindered the growth of crop roots in severe cases, in this paper, a 4SGMS-220 plough layer residual film recovery machine with a ground preparation device is designed. The main part of the machine is composed of a filming mechanism, a conveying mechanism, a soil crushing roller, and a film collecting box. The machine can achieve simultaneous film lifting, film stripping, collecting membrane and suppression operations. In this paper, primary focus is placed on the design of the filming mechanism, while the movement trajectory of the comb teeth and the filming condition are analysed in detail. In order to obtain the optimal combination of equipment and operating parameters, the equipment traveling speed, the filming device rotational speed, and the comb teeth depth are used as the influencing factors. Furthermore, the residual film recovery rate and impurity rates are employed as test indicators for three-factor three-level response surface experiment and optimization via Design-Expert software. The results indicate that optimal operation is achieved for the machine travel speed of 4.1 km/h, the filming device speed of 106 min-1, and the comb tooth soil penetration depth of 139.2 mm. The residual film recovery rate is equal to 74.32%, while the residual film impurity rate is equal to 7.11%. The difference between the test results and the predicted values is relatively small. Thus, it can be concluded that the optimized model is reliable.

Publisher

INMA Bucharest-Romania

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Food Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3