Author:
Guo Lifeng,Sun Yan,Shi Guannan
Abstract
In this paper, we study on the fractional nonlocal equation with the logarithmic nonlinearity formed by \[\begin{cases}\mathcal{L}_{K}u(x)+u\log|u|+|u|^{q-2}u=0, & x\in\Omega,\\ u=0, & x\in\mathbb{R}^{n}\setminus\Omega,\end{cases}\] where \(2\lt q\lt 2^{*}_s\), \(L_{K}\) is a non-local operator, \(\Omega\) is an open bounded set of \(\mathbb{R}^{n}\) with Lipschitz boundary. By using the fractional logarithmic Sobolev inequality and the linking theorem, we present the existence theorem of the ground state solutions for this nonlocal problem.
Publisher
AGHU University of Science and Technology Press
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献