An artificial intelligence approach for prognosis of COVID-19 course in hospitalized patients

Author:

Karonova T. L.1,Korsakov I. N.1,Mikhailova A. A.1,Lagutina D. I.1,Chernikova A. T.1,Vashukova М. A.2,Smolnikova M. A.1,Gusev D. A.2,Konradi A. O.1,Shlyakhto E. V.1

Affiliation:

1. National Medical Research Centre named after V.A. Almazov

2. National Medical Research Centre named after V.A. Almazov; Clinical Infectious Hospital named after S.P. Botkin

Abstract

Aim. To create algorithm and risk calculator for predicting the lethal outcome in patients with COVID-19.Materials and methods. Based on machine learning approach mortality risk calculator was developed in Almazov National Medical Research Centre using data of the hospitalised patients with an established diagnosis of COVID-19 (n=4071).Results. This mathematical model, which includes 11 significant features, has been proposed for estimation of fatal outcomes in the Clinical Infectious Hospital named after S.P. Botkin. Some key features were not assessed in most hospitals according to accepted standards of care for COVID-19. So systematic analysis of factors affecting the course of disease in patients (n=2876) were conducted and «urea» and «total protein» were replaced with «sex» and «BMI». Modified algorithm demonstrated high sensitivity and specificity. Conclusion. This calculator is able to predict hospitalisation outcome with high accuracy in patients infected with different strains of SARS-CoV-2. This decision support system may be used for risk stratification and following correct patients routing.

Publisher

SPRIDA

Subject

Infectious Diseases

Reference16 articles.

1. Stopkoronavirus: Oficial’naya informaciya o koronaviruse v Rossii: [Elektronnyj resurs]. URL: https://stopkoronavirus.rf/information. (Data obrashcheniya: 26.04.2023).

2. Smirnov A.YU. Analiz smertnosti ot koronavirusnoj infekcii v Rossii // Narodonaselenie. – 2021 – T. 24 – № 2 – C. 76-86.

3. Estestvennoe dvizhenie naseleniya v razreze sub”ektov Rossijskoj Federacii za aprel’ 2023 goda: [Elektronnyj resurs] // Rosstat. URL: https://rosstat.gov.ru/storage/mediabank/EDN_04-2023.html. (Data obrashcheniya: 26.04.2023).

4. Haldane V. et al. Health systems resilience in managing the COVID-19 pandemic: lessons from 28 countries //Nature Medicine. – 2021. – Т. 27. – №. 6. – С. 964-980.

5. Parra P.N.B, Atanasov V.A., Meurer J., et al. Data and Methodology Documentation for a COVID-19 Risk Calculator: Mortality Rates and Loss of Life Expectancy. SSRN; 2021; doi: 10.2139/ssrn.3795802.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3