Author:
Pan Min,Zhang Mingchuan,Zou Xuehua,Zhao Xuetong,Deng Tianran,Chen Tong,Huang Xiaoming
Abstract
The objectives of this study were to modify Chinese natural zeolite by NaCl and to investigate its suitability as a low-cost clay adsorbent to remove ammonium from aqueous solution. The effect of Ph on ammonium removal was investigated by batch experiments. The findings indicated that Ph has a significant effect on the removal of ammonium by M-Zeo and maximum adsorption occurred at Ph 8. Ion exchange dominated the ammonium adsorption process at neutral Ph, with the order of exchange selectivity being Na+ > Ca2+ > K+ > Mg2+. The Freundlich model provided a better description of the adsorption process than the Langmuir model. The maximum ammonium adsorption capacity was 17.83 mg/g for M-Zeo at 293K. Considering the adsorption isotherms and thermodynamic studies, the adsorption of ammonium by M-Zeo was endothermic and spontaneous chemisorption. Kinetic studies indicated that the adsorption of ammonium onto M-Zeo is well fitted by the pseudo-second-order kinetic model. Ea in the Arrhenius equation suggested the adsorption of ammonium on M-Zeo was a fast and diffusion-controlled process. The regeneration rate was 90.61% after 5 cycles. The removal of ammonium from real wastewater was carried out, and the removal efficiency was up to 99.13%. Thus, due to its cost-effectiveness and high adsorption capacity, M-Zeo has potential for use in ammonium removal from aqueous solutions.
Publisher
Academy of Science of South Africa
Subject
Management, Monitoring, Policy and Law,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献