Selective removal of ammonia from wastewater using Cu(II)-loaded Amberlite IR-120 resin and its catalytic application for removal of dyes

Author:

El-Ghobashy Marwa A.,Khamis Mohamed M.,Elsherbiny Abeer S.,Salem Ibrahim A.

Abstract

AbstractCationic ligand exchange is one of the most predominant mechanisms for the removal of ammonia from wastewater through complex formation. The complexation technique occurs between the metal ions loaded on the surface of Amberlite IR-120 and ammonia which is present in the medium. Cu(II)-loaded Amberlite IR-120 (R-Cu2+) was prepared and described using FT-IR, TGA, SEM, and EDX techniques. The prepared R-Cu2+ was applied for the elimination of ammonia from an aqueous solution. Different cations such as Co2+ and Ni2+ were loaded onto Amberlite IR-120 to study the impact of counter cation on the removal efficiency of ammonia. The ammonia removal percentage followed the order; R-Cu2+  > R-Ni2+  > R-Co2+. The effects of contact time, pH, initial concentration, temperature, and coexisting ions on the removal of ammonia from wastewater by R-Cu2+ were investigated. The equilibrium adsorbed amount of ammonia was found to be 200 mg/g at pH = 8.6 and 303 K within 60 min using 0.1 g R-Cu2+ and an initial concentration of ammonia of 1060 mg/L. The removal of ammonia using R-Cu2+ obeyed the non-linear plot of both Freundlich and Langmuir isotherms. According to the thermodynamic parameters, the adsorption of ammonia onto R-Cu2+ was an endothermic and spontaneous process. The time-adsorption data followed the pseudo-second-order and intraparticle diffusion models. Moreover, the resulting product (R-Cu(II)-amine composite) from the adsorption process exhibited high catalytic activity and could be low-cost material for the elimination of dyes such as aniline blue (AB), methyl green (MG), and methyl violet 2B (MV2B) from wastewater. Graphical Abstract

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Pollution,Environmental Chemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3