Circular closed-loop waste biorefineries: Organic waste as an innovative feedstock for the production of bioplastic in South Africa

Author:

Moodley PreshanthanORCID,Trois CristinaORCID

Abstract

The impact of landfills on the environment has come under increasing scrutiny in recent years due to the confounding effects of climate change and water scarcity. There is an urgent need to reduce from landfills the greenhouse gas emissions that cause climate change, and to provide effective treatment solutions for waste, thereby diverting it from landfills. With an estimated 80 million tonnes of plastic waste entering the world’s oceans annually, the accumulation of marine plastic has become a global crisis. Plastic pollution threatens food safety and quality, human health and coastal tourism, and contributes to climate change. For these reasons, there is an urgent need to explore a bioplastic biorefinery process. This review paper examines the potential of organic waste as an alternative carbon source in the efficient and feasible microbial production of polyhydroxyalkanoate (PHA) and polyhydroxybutyrate (PHB), which are precursors for bioplastic. More specifically, this paper presents a concept for a bioplastic biorefinery from a technological perspective, based on data from previous studies. Biofuel production processes are also assessed with the aim of integrating these processes to construct a bioplastic waste biorefinery. Garden refuse and food waste have been shown to be feasible feedstocks for the production of PHA and PHB in singular processes. Diverting these wastes away from landfills will significantly ease the environmental impacts currently associated with their disposal.Significance: A bioplastic biorefinery is a viable alternative to treat municipal organic waste. Several biofuel production processes can be integrated into a bioplastic biorefinery system. Organic waste is poorly managed in South Africa, resulting in greenhouse gas emissions. Several barriers and considerations must be overcome before implementing the technology at full scale.

Funder

National Research Foundation

Publisher

Academy of Science of South Africa

Subject

General Earth and Planetary Sciences,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3