Optimized Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) Production by Moderately Haloalkaliphilic Bacterium Halomonas alkalicola Ext

Author:

Muigano Martin N.1ORCID,Anami Sylvester E.1ORCID,Onguso Justus M.1,Mauti Godfrey O.2ORCID

Affiliation:

1. Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya

2. Department of Physical and Biological Sciences, Bomet University College, P.O. Box 701 62000-20400, Bomet, Kenya

Abstract

Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polymers that are produced by microorganisms as storage materials under limited nutrition and excess carbon. These PHAs have been found to be ideal for replacing synthetic plastics for use in packaging and biomedical applications. In this study, an alkaliphilic and moderately halophilic bacterium Halomonas alkalicola Ext was isolated from Lake Simbi Nyaima in western Kenya and investigated for PHA production. Sudan Black B and Nile Red A staining showed that bacterium had distinct ability for accumulation of PHAs. To optimize PHA production, the bacterium was grown in submerged fermentation under varying culture conditions and different sources and concentrations of carbon and nitrogen. With one-factor-at-a-time (OFTA) approach, optimal PHA yields were obtained after 72 hours at a pH of 10.0, temperature of 35°C, and 2.5% (w/v) NaCl. The bacterium yielded the highest biomass, and PHA amounts on 2% galactose and 0.1% ammonium sulfate as sources of carbon and nitrogen, respectively. A record PHA yield of 0.071 g g-1 with a titer of 1.419±0.09g/L was achieved from 3.397 g/L of biomass, equivalent to 41.8% PHA content. Using response surface methodology, PHA titer was increased by 1.5% to 1.44 g/L, while PHA content was improved 1.1-fold to 45.57%. Polymer analysis revealed that the extracted PHA was a poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) (3HB:3HV=92:8) with two copolymer subunits of 3-hydroxyvaryrate (3-HB) and 3-hydroxybutyrate (3-HV). Halomonas alkalicola Ext attained efficient galactose conversion into PHBV under high salinity and alkalinity conditions.

Funder

Jomo Kenyatta University of Agriculture and Technology

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3