In Situ Investigation of Dynamic Silver Crystallization Driven by Chemical Reaction and Diffusion

Author:

Liu Ting12,Dou Xiangyu13,Xu Yonghui13,Chen Yongjun2,Han Yongsheng13ORCID

Affiliation:

1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, 100190 Beijing, China

2. State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, 570228 Haikou, China

3. School of Chemical Engineering, University of Chinese Academy of Sciences, 100049 Beijing, China

Abstract

Rational synthesis of materials is a long-term challenging issue due to the poor understanding on the formation mechanism of material structure and the limited capability in controlling nanoscale crystallization. The emergent in situ electron microscope provides an insight to this issue. By employing an in situ scanning electron microscope, silver crystallization is investigated in real time, in which a reversible crystallization is observed. To disclose this reversible crystallization, the radicals generated by the irradiation of electron beam are calculated. It is found that the concentrations of radicals are spatiotemporally variable in the liquid cell due to the diffusion and reaction of radicals. The fluctuation of the reductive hydrated electrons and the oxidative hydroxyl radicals in the cell leads to the alternative dominance of the reduction and oxidation reactions. The reduction leads to the growth of silver crystals while the oxidation leads to their dissolution, which results in the reversible silver crystallization. A regulation of radical distribution by electron dose rates leads to the formation of diverse silver structures, confirming the dominant role of local chemical concentration in the structure evolution of materials.

Funder

MPCS Facility Upgradation Program

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3