Self-Stabilized Precipitation Polymerization and Its Application

Author:

Liu Zhenjie1,Chen Dong1,Zhang Jinfang1,Liao Haodong1,Chen Yanzhao1,Sun Yingfa1,Deng Jianyuan1,Yang Wantai12

Affiliation:

1. College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China

2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

An effective, value-added use of the large amounts of olefinic compounds produced in the processing of petroleum, aside from ethylene and propylene, has been a long outstanding challenge. Here, we developed a novel heterogeneous polymerization method, beyond emulsion/dispersion/suspension, termed self-stabilized precipitation (2SP) polymerization, which involves the nucleation and growth of nanoparticles (NPs) of a well-defined size without the use of any stabilizers and multifunctional monomers (crosslinker). This technique leads to two revolutionary advances: (1) the generation of functional copolymer particles from single olefinic monomer or complex olefinic mixtures (including C4/C5/C9 fractions) in large quantities, which open a new way to transform huge amount of unused olefinic compounds in C4/C5/C9 fractions into valuable copolymers, and (2) the resultant polymeric NPs possess a self-limiting size and narrow size distribution, therefore being one of the most simple, efficient, and green strategies to produce uniform, size-tunable, and functional polymeric nanoparticles. More importantly, the separation of the NPs from the reaction medium is simple and the supernatant liquid can be reused; hence this new synthetic strategy has great potential for industrial production.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3