Tapping Carbon Sequestration Potential of Blooming Macroalgae to Mitigate Climate Change

Author:

Zhang Yongyu1234ORCID,Liu Dong5,Jiao Nianzhi2ORCID

Affiliation:

1. Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.

2. Innovative Research Center for Carbon Neutralization, Global ONCE Program, Xiamen University, Xiamen 361005, China.

3. Shandong Energy Institute, Qingdao 266101, China.

4. Qingdao New Energy Shandong Laboratory, Qingdao 266101, China.

5. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.

Abstract

Macroalgal mariculture is gaining global attention to achieve carbon neutrality due to its important contribution to ocean carbon sequestration. However, some wild macroalgal species (e.g., Sargassum and Ulva prolifera ) exhibit strong environmental adaptability and can cause large-scale, recurrent blooms in global oceans, fueled by rising atmospheric CO 2 levels and coastal eutrophication. Notably, massive Ulva prolifera green tides have occurred annually in the Yellow Sea for the past 17 consecutive years. At the late blooming stage, millions of tons of U. prolifera naturally sink to the shallow seafloor. The subsequent intense microbial aerobic degradation of sinking macroalgae results in coastal hypoxia and acidification, with most of the macroalgal carbon returning to the atmosphere. Preventing or reducing the intense degradation of massive sinking U. prolifera could enable more macroalgal carbon storage in the ocean in the long term and alleviate the harmful effects of green tide. Thus, ecological disasters from macroalgal blooms may be transformed into useful natural platforms to increase ocean carbon sequestration. We propose an integrated strategy using environmentally friendly minerals (e.g., montmorillonite and calcium carbonate) and coagulants (e.g., polyaluminum chloride), along with natural algicidal bacteria or substances, to induce rapid flocculation and sedimentation of blooming macroalgae, reduce the degradation of sinking macroalgae and its negative environmental impacts, and minimize the generation of macroalgal propagules or seeds and the potential risk for future green tide outbreaks. This integrated approach is potentially a promising approach to tap the carbon sequestration potential of macroalgal blooms to mitigate climate change.

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3