Unified Picture on Temperature Dependence of Lithium Dendrite Growth via Phase-Field Simulation

Author:

Li Yajie1,Zhao Wei1,Zhang Geng2,Shi Siqi13ORCID

Affiliation:

1. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.

2. Clean Combustion Research Center (CCRC), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.

3. Materials Genome Institute, Shanghai University, Shanghai 200444, China.

Abstract

Lithium dendrite growth due to uneven electrodeposition may penetrate the separator and solid electrolyte, causing inner short circuit and potential thermal runaway. Despite great electrochemical phase-field simulation efforts devoted to exploring the dendrite growth mechanism under the temperature field, no unified picture has emerged. For example, it remains open how to understand the promotion, inhibition, and dual effects of increased temperature on dendrite growth when using different electrolyte types. Here, by comprehensively considering the temperature-dependent Li + diffusion coefficient, electrochemical reaction coefficient, and initial temperature distribution in phase-field model, we propose that the activation–energy ratio, defined as the ratio of electrochemical reaction activation energy to electrolyte Li + diffusion activation energy, can be used to quantify the effect of temperature on dendrite morphology. Specifically, we establish a mechanism diagram correlating the activation–energy ratio, uniform initial temperature, and maximum dendrite height, which unifies the seemingly contradictory simulation results. Furthermore, results based on nonuniform initial temperature distribution indicate that a positive temperature gradient along the discharging current facilitates uniform Li + deposition and local hotspot should be avoided. These findings provide valuable insights into the temperature-dependent Li dendrite growth and contribute to the practical application of Li metal batteries.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Energy (miscellaneous),Fuel Technology,Materials Science (miscellaneous),Renewable Energy, Sustainability and the Environment

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3