Abstract
Li dendrite growth, which causes potential internal short circuit and reduces battery cycle life, is the main hazard to lithium metal batteries. Separators have the potential to suppress dendrite growth by regulating Li+ distribution without increasing battery weight significantly. However, the underlying mechanism is still not fully understood. In this paper, we apply an electrochemical phase-field model to investigate the influences of separator thickness and surface coating on dendrite growth. It is found that dendrite growth under thicker separators is relatively uniform and the average dendrite length is shorter since the ion concentration within thicker separators is more uniform. Moreover, compared to single layer separators, the electrodeposition morphology under particle-coated separators is smoother since the particles can effectively regulate Li ionic flux and homogenize Li deposition. This study provides significant guidance for designing separators that inhibit dendrites effectively.
Funder
National Natural Science Foundation of China
Shanghai Pujiang Program
Hainan Key Research and Development program
Foundation of China Academy of Engineering Physics-Key Laboratory of Neutron Physics
King Abdullah University of Science and Technology
Subject
General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献