Affiliation:
1. School of Physics and Astronomy, University of Glasgow, G12 8QQ Glasgow, UK.
Abstract
Brain–computer interfaces are enabling a range of new possibilities and routes for augmenting human capability. Here, we propose brain–computer interfaces as a route towards forms of computation, i.e., computational imaging, that blend the brain with external silicon processing. We demonstrate ghost imaging of a hidden scene using the human visual system that is combined with an adaptive computational imaging scheme. This is achieved through a projection pattern “carving” technique that relies on real-time feedback from the brain to modify patterns at the light projector, thus enabling more efficient and higher-resolution imaging. This brain–computer connectivity demonstrates a form of augmented human computation that could, in the future, extend the sensing range of human vision and provide new approaches to the study of the neurophysics of human perception. As an example, we illustrate a simple experiment whereby image reconstruction quality is affected by simultaneous conscious processing and readout of the perceived light intensities.
Publisher
American Association for the Advancement of Science (AAAS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献