Injectable and Near-Infrared Light-Controllable Fibrin Hydrogels with Antimicrobial and Immunomodulating Properties for Infected Wound Healing

Author:

Zhang Qing12ORCID,Jiang Yongxian3ORCID,Zhang Xiaolong2ORCID,Wang Yi1ORCID,Ju Rong2ORCID,Wei Guoqing2ORCID

Affiliation:

1. School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.

2. Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 611731, China.

3. Sichuan Provincial Maternity and Child Health Care Hospital, the Affiliated Women’s and Children’s Hospital of Chengdu Medical College, Chengdu 610041, China.

Abstract

The management of infected wounds poses a significant challenge due to the growing issue of antibiotic resistance, underscoring the urgent necessity to innovate and implement alternative therapeutic strategies. These strategies should be capable of eliminating bacterial infections in infected wounds while circumventing the induction of multi-drug resistance. In the current study, we developed an easily prepared and injectable fibrin gel (FG) loaded with nanoparticles (NPs) that exhibit antibacterial and immunomodulatory properties to facilitate the healing of infected wounds. Initially, a novel type of NP was generated through the electrostatic interaction between the photothermal agent, mPEG-modified polydopamine (MPDA), and the nitric oxide (NO) donor, S-nitrosocysteamine (SNO). This interaction resulted in the formation of NPs referred to as SNO-loaded MPDA (SMPDA). Subsequently, the SMPDA was encapsulated into the FG using a double-barreled syringe, thereby producing the SMPDA-loaded FG (SMPDA/G). Experimental results revealed that SMPDA/G could effectively eliminate bacterial infections and alter the immune microenvironment. This efficacy is attributed to the synergistic combination of NO therapy and photothermal therapy, along with the role of SMPDA in facilitating M2 macrophage polarization within the gel. Accordingly, these findings suggest that the SMPDA/G holds substantial promise for clinical application in infected wound healing.

Funder

National Natural Sciences Foundation of China

State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation

Yingcai Cultivate Program of Chengdu Women’s and Children’s Central Hospital

Publisher

American Association for the Advancement of Science (AAAS)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3