Hybrid Directed Hypergraph Learning and Forecasting of Skeleton-Based Human Poses

Author:

Cui Qiongjie1ORCID,Ding Zongyuan2,Chen Fuhua3

Affiliation:

1. Nanjing University of Science and Technology, Nanjing, China.

2. Changzhou University, Changzhou, China.

3. Department of Physical Science & Mathematics, West Liberty University, West Liberty, WV, USA.

Abstract

Forecasting 3-dimensional skeleton-based human poses from the historical sequence is a classic task, which shows enormous potential in robotics, computer vision, and graphics. Currently, the state-of-the-art methods resort to graph convolutional networks (GCNs) to access the relationships of human joint pairs to formulate this problem. However, human action involves complex interactions among multiple joints, which presents a higher-order correlation overstepping the pairwise (2-order) connection of GCNs. Moreover, joints are typically activated by the parent joint, rather than driving their parent joints, whereas in existing methods, this specific direction of information transmission is ignored. In this work, we propose a novel hybrid directed hypergraph convolution network (H-DHGCN) to model the high-order relationships of the human skeleton with directionality. Specifically, our H-DHGCN mainly involves 2 core components. One is the static directed hypergraph, which is pre-defined according to the human body structure, to effectively leverage the natural relations of human joints. The second is dynamic directed hypergraph (D-DHG). D-DHG is learnable and can be constructed adaptively, to learn the unique characteristics of the motion sequence. In contrast to the typical GCNs, our method brings a richer and more refined topological representation of skeleton data. On several large-scale benchmarks, experimental results show that the proposed model consistently surpasses the latest techniques.

Funder

National Natural Science Foundation of China

Jiangsu Funding Program for Excellent Postdoctoral Talent

Natural Science Foundation of Jiangsu Province

China Postdoctoral Science Foundation

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3