Weakly- and Semisupervised Probabilistic Segmentation and Quantification of Reverberation Artifacts

Author:

Hung Alex Ling Yu1ORCID,Chen Edward2ORCID,Galeotti John12ORCID

Affiliation:

1. Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

2. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Objective and Impact Statement. We propose a weakly- and semisupervised, probabilistic needle-and-reverberation-artifact segmentation algorithm to separate the desired tissue-based pixel values from the superimposed artifacts. Our method models the intensity decay of artifact intensities and is designed to minimize the human labeling error. Introduction. Ultrasound image quality has continually been improving. However, when needles or other metallic objects are operating inside the tissue, the resulting reverberation artifacts can severely corrupt the surrounding image quality. Such effects are challenging for existing computer vision algorithms for medical image analysis. Needle reverberation artifacts can be hard to identify at times and affect various pixel values to different degrees. The boundaries of such artifacts are ambiguous, leading to disagreement among human experts labeling the artifacts. Methods. Our learning-based framework consists of three parts. The first part is a probabilistic segmentation network to generate the soft labels based on the human labels. These soft labels are input into the second part which is the transform function, where the training labels for the third part are generated. The third part outputs the final masks which quantifies the reverberation artifacts. Results. We demonstrate the applicability of the approach and compare it against other segmentation algorithms. Our method is capable of both differentiating between the reverberations from artifact-free patches and modeling the intensity fall-off in the artifacts. Conclusion. Our method matches state-of-the-art artifact segmentation performance and sets a new standard in estimating the per-pixel contributions of artifact vs underlying anatomy, especially in the immediately adjacent regions between reverberation lines. Our algorithm is also able to improve the performance of downstream image analysis algorithms.

Funder

Pennsylvania

US Army Medical contracts

Publisher

American Association for the Advancement of Science (AAAS)

Subject

General Medicine

Reference36 articles.

1. The comet tail artifact;Ziskin M.;Journal of Ultrasound in Medicine,1982

2. Imaging artifacts in diagnostic ultrasound—a review;Kirberger R. M.;Veterinary Radiology & Ultrasound,1995

3. Acoustic shadowing impairs accurate characterization of stenosis in carotid ultrasound examinations;Mohebali J.;Journal of vascular surgery,2015

4. Ultrasound intima-media segmentation using Hough transform and dual snake model;Xu X.;Computerized Medical Imaging and Graphics,2012

5. Needle-related ultrasound artifacts and their importance in anaesthetic practice;Reusz G.;British Journal of Anaesthesia,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3