A multi-modal vision-language pipeline strategy for contour quality assurance and adaptive optimization

Author:

Luan Shunyao,Ou-yang JunORCID,Yang Xiaofei,Wei Wei,Xue Xudong,Zhu BenpengORCID

Abstract

Abstract Objective. Accurate delineation of organs-at-risk (OARs) is a critical step in radiotherapy. The deep learning generated segmentations usually need to be reviewed and corrected by oncologists manually, which is time-consuming and operator-dependent. Therefore, an automated quality assurance (QA) and adaptive optimization correction strategy was proposed to identify and optimize ‘incorrect’ auto-segmentations. Approach. A total of 586 CT images and labels from nine institutions were used. The OARs included the brainstem, parotid, and mandible. The deep learning generated contours were compared with the manual ground truth delineations. In this study, we proposed a novel contour quality assurance and adaptive optimization (CQA-AO) strategy, which consists of the following three main components: (1) the contour QA module classified the deep learning generated contours as either accepted or unaccepted; (2) the unacceptable contour categories analysis module provided the potential error reasons (five unacceptable category) and locations (attention heatmaps); (3) the adaptive correction of unacceptable contours module integrate vision-language representations and utilize convex optimization algorithms to achieve adaptive correction of ‘incorrect’ contours. Main results. In the contour QA tasks, the sensitivity (accuracy, precision) of CQA-AO strategy reached 0.940 (0.945, 0.948), 0.962 (0.937, 0.913), and 0.967 (0.962, 0.957) for brainstem, parotid and mandible, respectively. The unacceptable contour category analysis, the ( F I , Acc I , F micro , F macro ) of CQA-AO strategy reached (0.901, 0.763, 0.862, 0.822), (0.855, 0.737, 0.837, 0.784), and (0.907, 0.762, 0.858, 0.821) for brainstem, parotid and mandible, respectively. After adaptive optimization correction, the DSC values of brainstem, parotid and mandible have been improved by 9.4%, 25.9%, and 13.5%, and Hausdorff distance values decreased by 62%, 70.6%, and 81.6%, respectively. Significance. The proposed CQA-AO strategy, which combines QA of contour and adaptive optimization correction for OARs contouring, demonstrated superior performance compare to conventional methods. This method can be implemented in the clinical contouring procedures and improve the efficiency of delineating and reviewing workflow.

Funder

the National Natural Science Foundation of China

the Shenzhen Basic Science Research

he National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3