Terahertz Metamaterials for Free-Space and on-Chip Applications: From Active Metadevices to Topological Photonic Crystals

Author:

Xing Hongyang1,Fan Junxing1,Lu Dan1,Gao Zhen1,Shum Perry Ping1,Cong Longqing1ORCID

Affiliation:

1. Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China

Abstract

Terahertz (THz) waves have exhibited promising applications in imaging, sensing, and communications, especially for the next-generation wireless communications due to the large bandwidth and abundant spectral resources. Modulators and waveguides to manipulate THz waves are becoming key components to develop the relevant technologies where metamaterials have exhibited extraordinary performance to control free-space and on-chip propagation, respectively. In this review, we will give a brief overview of the current progress in active metadevices and topological photonic crystals, for applications of terahertz free-space modulators and on-chip waveguides. In the first part, the most recent research progress of active terahertz metadevices will be discussed by combining metamaterials with various active media. In the second part, fundamentals of photonic topological insulations will be introduced where the topological photonic crystals are an emerging research area that would boost the development of on-chip terahertz communications. It is envisioned that the combination of them would find great potential in more advanced terahertz applications, such as reconfigurable topological waveguides and topologically-protected metadevices.

Funder

National Natural Science Foundation of China

Southern University of Science and Technology

Publisher

American Association for the Advancement of Science (AAAS)

Reference169 articles.

1. Editorial: Terahertz radiation: materials and applications;Cong L. Q.;Frontiers in Physics,2021

2. Metamaterials: a new frontier of science and technology

3. Plasmonic metamaterials;Yao K.;Nanotechnology Reviews,2014

4. Three-dimensional optical metamaterial with a negative refractive index

5. Illusion optics: the optical transformation of an object into another object;Lai Y.;Physical Review Letters,2009

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3