Terahertz flexible multiplexing chip enabled by synthetic topological phase transitions

Author:

Ren Hang1,Xu Su1,Lyu Zhidong2,Li Yuanzhen2,Yang Zuomin2,Xu Quan3,Yu Yong-Sen1,Li Yanfeng3,Gao Fei2,Yu Xianbin2,Han Jiaguang34,Chen Qi-Dai1,Sun Hong-Bo15

Affiliation:

1. State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University , Changchun 130012 , China

2. College of Information Science and Electronic Engineering, Zhejiang University , Hangzhou 310027 , China

3. Center for Terahertz Waves and College of Precision Instrument and Optoelectronics Engineering, Key Laboratory of Optoelectronic Information Technology (Ministry of Education of China), Tianjin University , Tianjin 300072 , China

4. Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology , Guilin 541004 , China

5. State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University , Beijing 100084 , China

Abstract

ABSTRACT Flexible multiplexing chips that permit reconfigurable multidimensional channel utilization are indispensable for revolutionary 6G terahertz communications, but the insufficient manipulation capability of terahertz waves prevents their practical implementation. Herein, we propose the first experimental demonstration of a flexible multiplexing chip for terahertz communication by revealing the unique mechanism of topological phase (TP) transition and perseveration in a heterogeneously coupled bilayer valley Hall topological photonic system. The synthetic and individual TPs operated in the coupled and decoupled states enable controllable on-chip modular TP transitions and subchannel switching. Two time-frequency interleaved subchannels support 10- and 12-Gbit/s QAM-16 high-speed data streams along corresponding paths over carriers of 120 and 130 GHz with 2.5- and 3-GHz bandwidths, respectively. This work unlocks interlayer heterogeneous TPs for inspiring ingenious on-chip terahertz-wave regulation, allowing functionality-reconfigurable, compactly integrated and CMOS-compatible chips.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Fundamental Research Funds for the Central Universities

National Key Research and Development Program of China

Zhejiang Provincial Natural Science Foundation

Key Research and Development Program of Zhejiang Province

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3