Classification of Soybean Pubescence from Multispectral Aerial Imagery

Author:

Bruce Robert W.1ORCID,Rajcan Istvan1ORCID,Sulik John1ORCID

Affiliation:

1. Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada

Abstract

The accurate determination of soybean pubescence is essential for plant breeding programs and cultivar registration. Currently, soybean pubescence is classified visually, which is a labor-intensive and time-consuming activity. Additionally, the three classes of phenotypes (tawny, light tawny, and gray) may be difficult to visually distinguish, especially the light tawny class where misclassification with tawny frequently occurs. The objectives of this study were to solve both the throughput and accuracy issues in the plant breeding workflow, develop a set of indices for distinguishing pubescence classes, and test a machine learning (ML) classification approach. A principal component analysis (PCA) on hyperspectral soybean plot data identified clusters related to pubescence classes, while a Jeffries-Matusita distance analysis indicated that all bands were important for pubescence class separability. Aerial images from 2018, 2019, and 2020 were analyzed in this study. A 60-plot test (2019) of genotypes with known pubescence was used as reference data, while whole-field images from 2018, 2019, and 2020 were used to examine the broad applicability of the classification methodology. Two indices, a red/blue ratio and blue normalized difference vegetation index (blue NDVI), were effective at differentiating tawny and gray pubescence types in high-resolution imagery. A ML approach using a support vector machine (SVM) radial basis function (RBF) classifier was able to differentiate the gray and tawny types (83.1% accuracy and kappa=0.740 on a pixel basis) on images where reference training data was present. The tested indices and ML model did not generalize across years to imagery that did not contain the reference training panel, indicating limitations of using aerial imagery for pubescence classification in some environmental conditions. High-throughput classification of gray and tawny pubescence types is possible using aerial imagery, but light tawny soybeans remain difficult to classify and may require training data from each field season.

Funder

Huron Commodities Inc

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Literature and Literary Theory,Music,Agronomy and Crop Science,Conservation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3