Estimation of the Maturity Date of Soybean Breeding Lines Using UAV-Based Multispectral Imagery

Author:

Zhou Jing,Yungbluth Dennis,Vong Chin Nee,Scaboo Andrew,Zhou JianfengORCID

Abstract

Physiological maturity date is a critical parameter for the selection of breeding lines in soybean breeding programs. The conventional method to estimate the maturity dates of breeding lines uses visual ratings based on pod senescence by experts, which is subjective by human estimation, labor-intensive and time-consuming. Unmanned aerial vehicle (UAV)-based phenotyping systems provide a high-throughput and powerful tool of capturing crop traits using remote sensing, image processing and machine learning technologies. The goal of this study was to investigate the potential of predicting maturity dates of soybean breeding lines using UAV-based multispectral imagery. Maturity dates of 326 soybean breeding lines were taken using visual ratings from the beginning maturity stage (R7) to full maturity stage (R8), and the aerial multispectral images were taken during this period on 27 August, 14 September and 27 September, 2018. One hundred and thirty features were extracted from the five-band multispectral images. The maturity dates of the soybean lines were predicted and evaluated using partial least square regression (PLSR) models with 10-fold cross-validation. Twenty image features with importance to the estimation were selected and their changing rates between each two of the data collection days were calculated. The best prediction (R2 = 0.81, RMSE = 1.4 days) was made by the PLSR model using image features taken on 14 September and their changing rates between 14 September and 27 September with five components, leading to the conclusion that the UAV-based multispectral imagery is promising and practical in estimating maturity dates of soybean breeding lines.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference28 articles.

1. Here’s How We Can Avert Ithttps://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html

2. Food Security and Why It Mattershttps://www.weforum.org/agenda/2016/01/food-security-and-why-it-matters/

3. Traditional and Modern Plant Breeding Methods with Examples in Rice (Oryza sativa L.)

4. What Is the Relationship between Soybean Maturity Group and Yield;Staton,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3