Investigation on P-Glycoprotein Function and Its Interacting Proteins under Simulated Microgravity

Author:

Li Yujuan1ORCID,Huang Lili1,Iqbal Javed2,Deng Yulin1ORCID

Affiliation:

1. School of Life Sciences, Beijing Institute of Technology, Beijing 100081, China

2. Department of Biology, Government College Mankera, University of Sargodha, Sargodha, Pakistan

Abstract

P-glycoprotein (P-gp) could maintain stability of the nerve system by effluxing toxins out of the blood-brain barrier. Whether it plays a very important role in drug brain distribution during space travel is not yet known. The present study was aimed at investigating P-gp function, expression, and its interacting proteins in a rat brain under simulated microgravity (SMG) by comparative proteomics approach. Rats were tail-suspended to induce short- (7-day) and long-term (21-day) microgravity. P-gp function was assessed by measuring the P-gp ATPase activity and the brain-to-plasma concentration ratio of rhodamine 123. P-gp expression was evaluated by Western blot. 21d-SMG significantly enhanced P-gp efflux activity and expression in rats. Label-free proteomics strategy identified 26 common differentially expressed proteins (DEPs) interacting with P-gp in 7d- and 21d-SMG groups. Most of the DEPs mainly regulated ATP hydrolysis coupled transmembrane transport and so on. Interaction analysis showed that P-gp might potentially interact with heat shock proteins, sodium/potassium ATP enzyme, ATP synthase, microtubule-associated proteins, and vesicle fusion ATPase. The present study firstly reported P-gp function, expression, and its potentially interacting proteins exposed to simulated microgravity. These findings might be helpful not only for further study on nerve system stability but also for the safe and effective use of P-gp substrate drugs during space travel.

Funder

1226 Major Project

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3