Unraveling Key Functional Bacteria across Land-Use Types on the Tibetan Plateau

Author:

Yang Yi1,Chen Yongliang1,Hao Wenying1,Xie Hanjie1,Chai Yabo1,Zhang Lu2,Zhang Zhiming3,Christie Peter1,Li Xiaolin1,Gai Jingping1

Affiliation:

1. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.

2. State Key Laboratory Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

3. School of Ecology and Environmental Sciences & Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, Yunnan University, Kunming 650091, Yunnan, China.

Abstract

Soil bacteria are vital to the modulation of soil carbon and nutrient cycling. However, the response of key microbiota and the metabolic potential of soil bacteria to tolerate disturbance have yet to be fully investigated across land-use types, especially in alpine ecosystems. Here, the potential of soil bacteria to conduct change to affect biogeochemical processes was evaluated across 4 paired natural land-use types (i.e., forest converted to shrubland or grassland, shrubland to grassland, and grassland degradation) on the Tibetan Plateau. Based on the FAPROTAX database, we found 574, 106, and 22 bacterial genera that were possibly related to the carbon, nitrogen, and sulfur cycles, respectively. Among the core and/or key genera involved in carbon and/or nitrogen cycles,BradyrhizobiumandSolirubrobacterwere common before and after disturbance, whereasBryobacter,Mycobacterium, andArthrobacterwere sensitive to disturbance. Disturbance had diverse effects on soil bacterial percentages in specific metabolic pathways. In particular, soil bacteria may lead to the decreases in carbon and nitrogen fixation, nitrite oxidation, and sulfate reduction under grassland degradation. Annual precipitation and plant Shannon index were important factors driving bacterial functional groups. These findings shed light on the substantial impacts of disturbance on bacterial metabolism, and suggest that some important bacterial taxa must be taken into consideration in policymaking and management strategies for the enhancement and maintenance of ecosystem functions.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Management, Monitoring, Policy and Law,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3