Three-Dimensional Leaf Edge Reconstruction Combining Two- and Three-Dimensional Approaches

Author:

Murata Hidekazu1ORCID,Noshita Koji12ORCID

Affiliation:

1. Department of Biology, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan.

2. Plant Frontier Research Center, Kyushu University, Fukuoka, Fukuoka 819–0395, Japan.

Abstract

Leaves, crucial for plant physiology, exhibit various morphological traits that meet diverse functional needs. Traditional leaf morphology quantification, largely 2-dimensional (2D), has not fully captured the 3-dimensional (3D) aspects of leaf function. Despite improvements in 3D data acquisition, accurately depicting leaf morphologies, particularly at the edges, is difficult. This study proposes a method for 3D leaf edge reconstruction, combining 2D image segmentation with curve-based 3D reconstruction. Utilizing deep-learning-based instance segmentation for 2D edge detection, structure from motion for estimation of camera positions and orientations, leaf correspondence identification for matching leaves among images, and curve-based 3D reconstruction for estimating 3D curve fragments, the method assembles 3D curve fragments into a leaf edge model through B-spline curve fitting. The method's performances were evaluated on both virtual and actual leaves, and the results indicated that small leaves and high camera noise pose greater challenges to reconstruction. We developed guidelines for setting a reliability threshold for curve fragments, considering factors occlusion, leaf size, the number of images, and camera error; the number of images had a lesser impact on this threshold compared to others. The method was effective for lobed leaves and leaves with fewer than 4 holes. However, challenges still existed when dealing with morphologies exhibiting highly local variations, such as serrations. This nondestructive approach to 3D leaf edge reconstruction marks an advancement in the quantitative analysis of plant morphology. It is a promising way to capture whole-plant architecture by combining 2D and 3D phenotyping approaches adapted to the target anatomical structures.

Funder

Japan Society for the Promotion of Science

Precursory Research for Embryonic Science and Technology

JST-Mirai Program

Moonshot Research and Development Program

Bio-oriented Technology Research Advancement Institution

Publisher

American Association for the Advancement of Science (AAAS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3