A Novel Intelligent System for Dynamic Observation of Cotton Verticillium Wilt

Author:

Huang Chenglong1,Zhang Zhongfu1,Zhang Xiaojun2,Jiang Li1,Hua Xiangdong1,Ye Junli2,Yang Wanneng23,Song Peng2,Zhu Longfu23

Affiliation:

1. College of Engineering, Huazhong Agricultural University, Wuhan 430070, PR China.

2. College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, PR China.

3. National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China.

Abstract

Verticillium wilt is one of the most critical cotton diseases, which is widely distributed in cotton-producing countries. However, the conventional method of verticillium wilt investigation is still manual, which has the disadvantages of subjectivity and low efficiency. In this research, an intelligent vision-based system was proposed to dynamically observe cotton verticillium wilt with high accuracy and high throughput. Firstly, a 3-coordinate motion platform was designed with the movement range 6,100 mm × 950 mm × 500 mm, and a specific control unit was adopted to achieve accurate movement and automatic imaging. Secondly, the verticillium wilt recognition was established based on 6 deep learning models, in which the VarifocalNet (VFNet) model had the best performance with a mean average precision ( mAP ) of 0.932. Meanwhile, deformable convolution, deformable region of interest pooling, and soft non-maximum suppression optimization methods were adopted to improve VFNet, and the mAP of the VFNet-Improved model improved by 1.8%. The precision–recall curves showed that VFNet-Improved was superior to VFNet for each category and had a better improvement effect on the ill leaf category than fine leaf. The regression results showed that the system measurement based on VFNet-Improved achieved high consistency with manual measurements. Finally, the user software was designed based on VFNet-Improved, and the dynamic observation results proved that this system was able to accurately investigate cotton verticillium wilt and quantify the prevalence rate of different resistant varieties. In conclusion, this study has demonstrated a novel intelligent system for the dynamic observation of cotton verticillium wilt on the seedbed, which provides a feasible and effective tool for cotton breeding and disease resistance research.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Agronomy and Crop Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3