Research on Remote-Sensing Identification Method of Typical Disaster-Bearing Body Based on Deep Learning and Spatial Constraint Strategy

Author:

Wang Lei12,Xu Yingjun23,Chen Qiang1ORCID,Wu Jidong23ORCID,Luo Jianhui1,Li Xiaoxuan1,Peng Ruyi23,Li Jiaxin23

Affiliation:

1. School of Geomatics and Urban Spatial Informatics, Beijing University of Civil Engineering and Architecture, Beijing 102616, China

2. Joint International Research Laboratory of Catastrophe Simulation and Systemic Risk Governance, Beijing Normal University, Zhuhai 519087, China

3. School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China

Abstract

The census and management of hazard-bearing entities, along with the integrity of data quality, form crucial foundations for disaster risk assessment and zoning. By addressing the challenge of feature confusion, prevalent in single remotely sensed image recognition methods, this paper introduces a novel method, Spatially Constrained Deep Learning (SCDL), that combines deep learning with spatial constraint strategies for the extraction of disaster-bearing bodies, focusing on dams as a typical example. The methodology involves the creation of a dam dataset using a database of dams, followed by the training of YOLOv5, Varifocal Net, Faster R-CNN, and Cascade R-CNN models. These models are trained separately, and highly confidential dam location information is extracted through parameter thresholding. Furthermore, three spatial constraint strategies are employed to mitigate the impact of other factors, particularly confusing features, in the background region. To assess the method’s applicability and efficiency, Qinghai Province serves as the experimental area, with dam images from the Google Earth Pro database used as validation samples. The experimental results demonstrate that the recognition accuracy of SCDL reaches 94.73%, effectively addressing interference from background factors. Notably, the proposed method identifies six dams not recorded in the GOODD database, while also detecting six dams in the database that were previously unrecorded. Additionally, four dams misdirected in the database are corrected, contributing to the enhancement and supplementation of the global dam geo-reference database and providing robust support for disaster risk assessment. In conclusion, leveraging open geographic data products, the comprehensive framework presented in this paper, encompassing deep learning target detection technology and spatial constraint strategies, enables more efficient and accurate intelligent retrieval of disaster-bearing bodies, specifically dams. The findings offer valuable insights and inspiration for future advancements in related fields.

Funder

NATIONAL KEY R&D PLAN OF China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3